Code: 22MEMD1T2

I M.Tech - I Semester - Regular Examinations - MARCH - 2023

PRESSURE VESSEL DESIGN (MACHINE DESIGN)

Duration: 3 hours Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks		
		UNIT-I					
1	a)	How is the dilation of a pressure vessel	L2	CO1	7 M		
		measured? Find the equation for the dilation of a spherical pressure vessel.					
	b)	Discuss design parameters used in pressure	L2	CO1	8 M		
		vessels subjected to different loads.					
		OR		Τ	Г		
2		Estimate an equation for finding out the	L2	CO1	15 M		
		hoop stress in a cylindrical pressure vessel,					
		when $d/t < 20$, subjected to internal					
		pressure.					
				I			

		UNIT-II			
3		Explain the cylindrical bending of	L2	CO1	15 M
		uniformly loaded rectangular plates with			
		simply supported edges.			
		OR			
4		Derive the differential equation for	L2	CO1	15 M
		uniformly loaded circular plates with			
		clamped edges.			
	I				
		UNIT-III			
5	a)	Discuss different types of fracture in	L2	CO2	7 M
		tension.			
	b)	Discuss the fatigue crack growth and the	L2	CO3	8 M
		fatigue life prediction of pressure vessels.			
		OR			
6		Discuss the effect of cold work or strain	L2	CO2	15 M
		hardening on the physical properties of			
		pressure vessel steels.			
	ı	UNIT-IV		1	
7	a)	Explain how surface roughness affects the	L3	CO3	7 M
		fatigue life of pressure vessels.			
	b)	Explain the effect of warm prestressing on	L3	CO4	8 M
		the toughness of pressure vessel steels at			
		ambient temperature.			
		OR			

8	Analyze the impact of the environment and						L4	CO4	15 M	
	other	variables	on	the	fatigue	life	of			
	pressure vessel materials.									